

*

Faculty of Science

Exam

Quantum Theory of Molecules and Matter Master Chemistry (joint degree)

Tentamen Date: 25 October 2017 Time: 13-16 hours

Number of pages: 7 (including front page) Number of open questions: 8 For each question the maximum number of points is indicated.Total number of points: 100

BEFORE YOU START

- Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your **mobile phone** has to be switched off and be put in your coat or bag. Your **coat and bag** should be on the ground.
- **Tools allowed**: Kladpapier, Rekenmachine (grafisch), Rekenmachine (niet-grafisch), Studieboek of reader. Other tools are not allowed.

PRACTICAL MATTERS

- The first 30 minutes and the last 15 minutes you are not allowed to leave the room, not even to visit the toilet.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, fill out the evaluation form at the end of the exam.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your registration and a valid ID.
- During the examination it is not permitted to visit the toilet, unless the invigilator gives permission to do so.
- You may take this exam paper with you when you are done.

Good luck!

a Paola Exercise 1 (6 points)

Consider an electron in the H atom whose state is described by the following wavefunction:

$$\psi(r,\vartheta,\varphi) = R_{32}(r)Y_{21}(\vartheta,\varphi) + (1-i)R_{31}(r)Y_{11}(\vartheta,\varphi) + (1+i)R_{30}(r)Y_{00}(\vartheta,\varphi)$$

where $R_{n\ell}(r)$ are the solutions of the radial part of the H atom Hamiltonian and $Y_{\ell m}(\vartheta, \varphi)$ are spherical harmonics

¹(a) Is $\psi(r, \vartheta, \varphi)$ normalized? If not, normalize it.

¹(b) Is $\psi(r, \vartheta, \varphi)$ an eigenfunction of the Hamiltonian for the electron in the H atom? Explain your answer

¹(c) Is $\psi(r, \vartheta, \varphi)$ an eigenfunction of the square of the electron angular momentum operator ℓ^2 ? Explain your answer.

¹(d) Is $\psi(r, \vartheta, \varphi)$ an eigenfunction of the *z* component of the electron angular momentum operator ℓ_z ? Explain your answer.

For the following question, consider the normalized wavefunction from question (a):

²(e) If we measure the energy of the electron in the state $\psi(r, \vartheta, \varphi)$ which values can we obtain? With which probabilities? Answer to the same question for a measure of ℓ^2 and ℓ_z .

Consider the raising angular momentum operator

$$\ell_+ = \ell_x + i\ell_y$$

²(a) Compute the commutator $[\ell_+, \ell_x^2]$

²(b) Compute the matrix element $\langle 3 1 | \ell_y | 3 2 \rangle$, where the notation $| \ell m \rangle$ indicates eigenstates of ℓ^2 and ℓ_z .

⁴(c) A system has orbital angular momentum $\ell = 3$ and spin angular momentum s = 1. Write all the microstates of the system in the uncoupled representation $|\ell m_l s m_s\rangle$ and in the coupled representation $|\ell s j m_i\rangle$.

Exercise 3 (10 points) H. Ellong

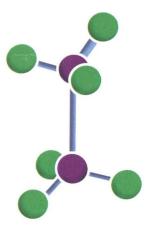
⁴(a) Determine the values of the missing characters X1 to X4 in the following D_{3d} character table. Explain your answer from the point of view of group theory.

	Character table D _{3d} point group												
	E	2C ₃	3C'2	i	2S ₆	3σ _d	linear, rotations	quadratic					
A _{1g}	1	1	1	1	1	1		x^2+y^2, z^2					
A _{2g}	1	1	-1	1	1	-1	Rz						
Eg	2	-1	0	2	-1	0	(R_x, R_y)	$(x^2-y^2, xy) (xz, yz)$					
A _{1u}	1	1	1	-1	-1	-1							
A _{2u}	1	1	-1	-1	-1	1	Z						
Eu	X 1	X2	X3	X4	1	0	(x, y)						

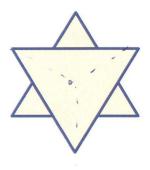
Character table D_{3d} point group

DIES

⁴(a) Determine the point group to which the staggered form of ethane (C_2H_6) belongs.



(i) Stucture of staggered form ethane



(ii) Top view of the staggered form ethane

 2 (b) Does the staggered form ethane have a permanent dipole moment? Explain your answer from the point of view of group theory.

Exercise 4 (15 points)

thong

It is known that the molecule IF₅ shown below belongs to the point group C_{4v} :

Structure of IF5

¹⁰(a) Which symmetry species do the vibrational modes of IF₅ span?

(b) Determine for each of the vibrational modes if the mode is infrared active.

Note: Based on Cartesian coordinates the contribution of each unshifted atom to the character of the reducible representation

operation	Contribution to character	7	
Е	3		
i	-3	7	
σ	1		1 -
C _n	$2\cos(2\pi/n)+1$	C2=-1	(9=
S _n	$2\cos(2\pi/n)-1$		

e

1

....

Exercise 5 (12 points)

Consider a particle with mass m in a one-dimensional box of length L for which the potential energy is given by

$$V(x) = \begin{cases} 0, & 0 \le x \le L\\ \infty, & \text{otherwise} \end{cases}$$

As has been derived in Chapter 2, the eigenfunctions of this problem are given by

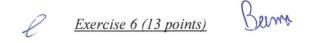
$$\psi_n(x) = \left(\frac{2}{L}\right)^{1/2} \sin\left(\frac{n\pi x}{L}\right)$$

The potential energy is now perturbed by an additional potential of which the height is +a for $0 \le x \le L/2$ and -a for $L/2 < x \le L$.

(a) What is the first-order correction to the energy of the ground state due to this perturbation ?

 7 (b) Derive an expression for the wavefunction of the ground state that has been corrected for the contribution of the first excited state.

N.B. Use $sin(2\theta) = 2sin(\theta)cos(\theta)$!



In the following exercise we will use hydrogen eigenfunctions that are given in this exercise as $\psi_{n,l,m_l}(r,\theta,\phi)$

$$\psi_{100}(r,\theta,\phi) = (\pi a_0^3)^{-1/2} \exp\left(-\frac{r}{a_0}\right)$$
$$\psi_{211}(r,\theta,\phi) = -(\pi a_0^3)^{-1/2} \frac{r}{8a_0} \sin\theta \exp(i\phi) \exp\left(-\frac{r}{2a_0}\right)$$
$$\psi_{210}(r,\theta,\phi) = (8\pi a_0^3)^{-1/2} \frac{r}{2a_0} \cos\theta \exp\left(-\frac{r}{2a_0}\right)$$
$$\psi_{21-1}(r,\theta,\phi) = (\pi a_0^3)^{-1/2} \frac{r}{8a_0} \sin\theta \exp(-i\phi) \exp\left(-\frac{r}{2a_0}\right)$$

Given is that

$$\int_{0}^{\infty} \exp(-br) r^{n} dr = n! / b^{n+1}, \quad n > -1$$

A hydrogen atom is placed in a uniform but time-dependent electric field in the zdirection with a magnitude of

$$\begin{cases} \mathcal{E} = 0 & \text{for } t < 0\\ \mathcal{E} = \mathcal{E}_0 \exp(-t/\tau) & \text{for } t \ge 0 \quad (\tau > 0) \end{cases}$$

leading to a perturbing Hamiltonian that is given by

 $\widehat{H}^{(1)}(t) = -e\big(-\mathcal{E}_0 z \exp(-t/\tau)\big)$

At time t=0, the hydrogen atom is in the ground (1s) state.

⁶(a) Show that the transition probability amplitude for finding the atom at time t = t in its excited 2p state is given by

$$c_{1s \to 2p} = \frac{1}{i\hbar} \int_{0}^{t} \langle 210 | \hat{H}^{(1)}(t') | 100 \rangle \exp(i\omega t') dt'$$

where $\omega = (E_{2p} - E_{1s})/\hbar$.

N.B. You thus have to show in this part as well that the transition probabilities to the other 2p states are zero.

⁷(b) Calculate the probability to find the hydrogen atom at time $t = \infty$ in its excited 2p state in terms of the symbols used in this exercise ($\mathcal{E}_0, E_{1s}, E_{2p}, a_0$, etc.)

Z Exercise 7 (20 points)

Consider a Sulfur (S) atom in the ground-state configuration $1s^2 2s^2 2p^6 3s^2 3p^4$.

⁴(a) Give the terms (and their degeneracy) that arise from this configuration.

³(c) Give the levels that are obtained when we consider also the spin-orbit coupling. Which one has the lowest energy?

³(b) Answer to questions a) and b) for the excited configuration $1s^2 2s^2 2p^6 3s^2 3p^2 4s^2$.

⁴(d) Predict the lowest energy term for the Europium (Eu atom) in its ground state configuration [Xe] $4f^7 6s^2$ (*hint*: you don't need to construct the microstates for this case, since **only the lowest energy term** is requested. Explain your reasoning.)

⁶(e) Give the ground state configurations and terms of the molecules F_2 and F_2^+ , and give their bond orders.

Q Exercise 8 (15 points)

Poola

Consider an approximation for the K atom in which the effect of the core electrons is modeled with an effective central potential, so that only the 4s electron needs to be treated explicitly. Study the molecules K_2^+ and K_2 within this approximation:

²(a) Denoting $A(\mathbf{r})$ and $B(\mathbf{r})$ the (approximate) 4s orbitals centered in the two atoms, write the two LCAO bonding and antibonding orbitals. Write the (approximate) ground-state wave functions for the two molecules K_2^+ and K_2 in terms of these orbitals. Do not forget the spin part.

³(b) For the molecule K₂ write also the other three LCAO wavefunctions for the singlet and triplet states constructed from the excited configurations $1\sigma_g^{\ 1}1\sigma_u^{\ 1}$ and $1\sigma_u^{\ 2}$. Do not forget the spin part.

³(c) Consider the singlet and triplet states of question b) arising from the configuration $1\sigma_g^{1}1\sigma_u^{1}$. Which of the two states has lower energy? Why?

Consider now the Heitler-London approximate wavefunction at large internuclear separations R (where we can set the overlap integral $S \approx 0$):

$$\psi_{HL}(1,2) = \frac{1}{\sqrt{2}} [A(\mathbf{r}_1)B(\mathbf{r}_2) + B(\mathbf{r}_1)A(\mathbf{r}_2)] \frac{1}{\sqrt{2}} (\alpha(1)\beta(2) - \alpha(2)\beta(1))$$

 2 (d) Explain the physical meaning of this wavefunction.

⁵(e) Show explicitly that this wavefunction can be written as a linear combination of the two LCAO singlet wavefunctions of g symmetry, $1\sigma_g^2$ and $1\sigma_u^2$, computed in b), by finding the coefficients appearing in the linear combination. You can keep the overlap integral S = 0 in all your calculations.

