

Faculty of Science

Exam

Quantum Theory of Molecules and Matter Master Chemistry (joint degree)

Tentamen Date: 21 October 2019 Time: 13-16 hours

Number of pages: 6 (including front page) Number of open questions: 8 For each question the maximum number of points is indicated.Total number of points: 100

BEFORE YOU START

- Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your **mobile phone** has to be switched off and be put in your coat or bag. Your **coat and bag** should be on the ground.
- Tools allowed: Kladpapier, Rekenmachine (niet-grafisch), Studieboek of reader. Other tools are not allowed.

PRACTICAL MATTERS

- The first 30 minutes and the last 15 minutes you are not allowed to leave the room, not even to visit the toilet.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, fill out the evaluation form at the end of the exam.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your registration and a valid ID.
- During the examination it is not permitted to visit the toilet, unless the invigilator gives permission to do so.
- You may take this exam paper with you when you are done.

Good luck!

-* *

Exercise 1 (8 points)

For a particle confined to the region $0 \le x \le a$ on the x-axis (1D box with length *a*), consider the wavefunction

$$\phi(x) = C(ax - x^2).$$

²(a) Determine the value of the constant C in order to normalize this wavefunction. Is there only one possible choice for C?

Consider now the following wavefunction for an electron in the H atom:

$$\psi(r,\theta,\phi) = \frac{1}{\sqrt{5}} \Big[R_{21}(r) Y_{1,1}(\theta,\phi) + 2iR_{31}(r) Y_{1,-1}(\theta,\phi) \Big].$$

 $R_{n\ell}(r)$ are the solutions of the radial part of the H atom Hamiltonian \hat{H} and $Y_{\ell,m}(\theta, \phi)$ are spherical harmonics. In addition to \hat{H} , consider the operators \hat{L}^2 and \hat{L}_z (square and z-component of the orbital angular momentum).

²(b) Is $\psi(r, \theta, \phi)$ an eigenfunction of any of these operators? Explain your answer.

²(c) Compute the expectation value $\langle \hat{L}_z \rangle$ in the state $\psi(r, \theta, \phi)$.

²(d) If we measure the energy of the electron in the state $\psi(r, \theta, \phi)$ which values can we obtain? With which probabilities?

Exercise 2 (7 points)

Consider the lowering angular momentum operator $\ell_{-} = \ell_{x} - i\ell_{y}$

²(a) Compute the commutator $[\ell_{-}, \ell_{x}^{2}]$

-* .* .}

²(b) What is the effect of ℓ_{-} when is applied to the states $|32\rangle$ and $|3-3\rangle$? (the notation $|\ell m\rangle$ indicates eigenstates of ℓ^{2} and ℓ_{z}).

³(c) A system has orbital angular momentum $\ell = 1$ and spin angular momentum $s = \frac{3}{2}$. Write all the microstates of the system in the uncoupled representation $|\ell m_l s m_s\rangle$ and in the coupled representation $|\ell s j m_i\rangle$.

1

Exercise 3 (10 points)

⁴(a) A Ni atom belongs to the C_{4v} point group when it sits in a fourfold site on an Cu (100) surface as shown below. Determine which electric dipole transitions from its ground $p_{x,y}$ orbital to *d* orbitals are allowed in the *z*-direction. *Noe: electric dipole moment operator* given by $\hat{\mu}_z = e\vec{z}$

 3 (b) Determine the point group of the molecule dimanganese decacarbonyl (staggered rotamer with the structure shown below).

 $^3(c)$ Fill in the values of the first two columns and the first row of the character table of $D_{4h^{\prime}}$

D _{4h}	E	2C4	C_2	2 <i>C</i> ₂ ′	2 <i>C</i> ₂ "	i	254	σ_h	$2\sigma_v$	$2\sigma_d$
A 19			1	1	_ 1	1	1	1	- 1	_ 1
B_{1g}			1	1	-1	1	-1	1	1	-1
B_{2g} E_g			-2	-10	0	2	0	-2	- 1	0
A_{1u} A_{2u}			1	-1^{1}	1 1	-1 -1	-1 - 1	-1 -1	-1	- 1 1
B_{1u}			1	1	-1	$-1 \\ -1$	1		- 1	1
\tilde{E}_{u}^{2u}			-2	Ô	ô	-2	ô	2	ò	ò

Exercise 4 (15 points)

It is known that staggered sthane (C_2H_6) belongs to point group D_{3d} .

						Ch	aracter tab	le for point g	roup D _{3d}
							(x axis co	incident with C'2 axis	s)
D _{3d}	E	2C3	3C'2	i	2S6	30 _d	linear functions, rotations	quadratic functions	cubic functions
Alg	+1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}, z^{2}$	-
A _{2g}	+1	+1	-1	+1	+1	-1	Rz	-	-
Eg	+2	-1	0	+2	-1	0	(R _x , R _y)	$(x^2-y^2, xy)(xz, yz)$	-
A _{1u}	+1	+1	+1	-1	-1	-1	-	-	$x(x^2-3y^2)$
A _{2u}	+1	+1	-1	-1	-1	+1	Z	-	$y(3x^2-y^2), z^3, z(x^2+y^2)$
Eu	+2	-1	0	-2	+1	0	(x, y)	-	$(xz^2, yz^2) [xyz, z(x^2-y^2)] [x(x^2+y^2), y(x^2+y^2)]$

Character contribution table for Cartesian coordinates operation contribution to character

E	3
i	-3
σ	1
Cn	2cos(360/n)+1
C ₂	-1
C ₃	0
C4	1
C ₆	2
Sn	2cos(360/n)-1
S ₃	-2
S ₄	-1
S ₆	0

²(a) How many vibrational modes does a staggered ethane molecule have?

⁴(b) Determine the symmetry species of the vibrational modes.

⁴(c) Which of these vibrational modes are bending modes?

⁵(d) Which of the vibrational modes are Raman active?

Exercise 5 (8 points)

90.120=0.866

In the following we consider an infinite square well (see Exercise 1) in which we put as a perturbation a delta-function bump in the center

$$\widehat{H}^{(1)} = \alpha \delta\left(x - \frac{a}{2}\right); \quad \delta\left(x - \frac{a}{2}\right) = \begin{cases} 1 \text{ if } x = a/2\\ 0 \text{ if } x \neq a/2 \end{cases}$$

³(a) Find the first-order correction to the allowed energies E_n . Make a distinction between even and odd values of n.

 5 (b) Find the first three nonzero terms in the expansion (6.22) of the correction to the ground state of the system.

Exercise 6 (17 points)

Consider a particle of mass *m* in a one-dimensional harmonic oscillator potential $V = \frac{1}{2}m\omega_0^2$. At t = 0, it is in the ground state. For t > 0, a time-dependent perturbing potential $H^{(1)}(t) = F_0 x \cos \omega t$ is applied where F_0 is constant in both space and time. In the following we will use the bracket notation in which we indicate with $|v\rangle$ the eigenfunction $\psi_v(x) = N_v H_v(\alpha x) e^{-\alpha^2 x^2/2}$ with eigenvalue $E_v = (v + \frac{1}{2})\hbar\omega_0$.

⁵(a) Show that

$$c_{v}(t) = -\frac{i}{\hbar} F_{0} \int_{0}^{t} \langle v | x \cos(\omega t') | 0 \rangle e^{i\omega_{v0}t'} dt'$$

in which $c_{\nu}(t)$ denotes the coefficient of a particular state $|\nu\rangle$ in the time-dependent perturbed wave function that is initially zero, and in which $\omega_{\nu 0} = \frac{E_{\nu} - E_{0}}{\hbar}$.

 5 (b) Given that

$$\langle v|x|0\rangle = \left(\frac{\hbar}{2m\omega_0}\right)^{\frac{1}{2}}$$

if v = 1 and otherwise 0, show that the time-dependent perturbed wavefunction of the ground state only contains contributions from states $|0\rangle$ and $|1\rangle$, and is given by

$$\Psi(t) = e^{-i\omega_0 t/2} |0\rangle + c_1(t) e^{-i3\omega_0 t/2} |1\rangle$$

⁷(c) Derive an expression for $c_1(t)$ in terms of F_0 , \hbar , ω , ω_0 , and $\langle 1|x|0 \rangle$.

Exercise 7 (20 points)

Consider a sulfur (S) atom in the ground-state configuration $1s^2 2s^2 2p^6 3s^2 3p^4$.

⁶(a) Give the terms ${}^{2S+1}L$ that arise from this configuration.

⁶(b) Give the levels ${}^{2S+1}L_J$ that are obtained when we consider spin-orbit coupling. Which one has the lowest energy?

⁴(c) An excited configuration of the same atom is $1s^2 2s^2 2p^6 3s^2 3p 4s^2 4p$ How do the answers to (a) and (b) change in this case?

⁴(d) Give the ground state configurations and terms of the molecules B_2 and B_2^- and give their bond orders.

Exercise 8 (15 points)

Consider an approximation for the Li atom (ground-state configuration: $1s^22s$) in which the effect of the 1s electrons is modeled with an effective central potential, so that only the 2s electron needs to be treated explicitly. Study the molecules Li_2^+ and Li_2 within this approximation:

⁴(a) Denoting $A(\mathbf{r})$ and $B(\mathbf{r})$ the (approximate) 2s orbitals centered in the two atoms, write the LCAO ground-state wave function for the two molecules Li_2^+ and Li_2 . Do not forget the spin part.

³(b) Which of the two molecules do you expect to be better described by the LCAO wavefunction? Why?

⁶(c) Write in terms of the $1\sigma_g$ and $1\sigma_u$ molecular orbitals the corresponding four possible LCAO wavefunctions for the molecule Li₂ (corresponding to the configurations $1\sigma_g^2$, $1\sigma_u^2$, $1\sigma_g^{-1}1\sigma_u^{-1}$). Indicate explicitly the total spin of the electrons in each case.

²(d) Without doing any calculation, explain why the excited triplet wavefunction $1\sigma_g^{1}1\sigma_u^{1}$ is expected to give a lower energy than the excited singlet wavefunction $1\sigma_g^{1}1\sigma_u^{1}$.